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Abstract—Lifestyle influences not only everyone's quality of life but has a huge impact on the whole society. 

An unhealthy lifestyle such as habitual smoking and drinking would have a tremendous yet complex impact 
on one’s biochemical system. This project leverages machine learning algorithms to predict lifestyle based on 
biological measurements and results, aiming to gain better insights into how the stimuli influence an 
individual’s inner body situation, which could be used by health institutions for better in-time interventions 
and management. This project benchmarked nine machine learning algorithms, including three ensemble 
classifiers. The Majority Voting Ensemble classifier observed the best performance, which yielded an F1-
score of 80.15% and an accuracy of 75.85%. Conversely, the Naïve Bayes and K-Nearest Neighbors 
algorithms demonstrated the least favorable performance, with an F1-scores of 73.27% and 74.25%, and 
accuracies of 71.77% and 70.15% 
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I. SPECIFIC AIMS 
The specific aims for our lifestyle prediction project are as follows: 

a) Benchmarking of different machine learning algorithms for lifestyle prediction. 
For measuring the performance of the algorithms, we will use the following metrics: 

a) Accuracy 
b) Precision 
c) Recall 
d) F1-score 
e) ROC Curve and AUC-ROC Value 
f) Mean Squared Error 
g) Confusion Matrix 

b) Based on the best-performing individual classifiers, develop and evaluate ensemble classifiers. 
c) Employing feature engineering techniques to create efficient classifiers. 

 
This report aims to address the following inquiries: 

1. Objective (What): The classification task involves distinguishing between healthy and unhealthy 
lifestyles based on biomarkers. 

2. Purpose (Why): The goal is to develop a machine learning model that facilitates timely 
interventions and effective management for health institutions. 

3. Approach (How): The methodology involves optimizing individual machine learning algorithms 
and subsequently leveraging them to construct an enhanced ensemble classifier. 

II. BACKGROUND 
Lifestyle has the capability to impact various aspects of a person’s life. Numerous benefits can be 

associated with a lifestyle that is generally portrayed as healthy; improved mental health, reduced risk of 
mental disease, enhanced physical function and prolonged lifespan are a few of the many benefits. The 
primary lifestyle-related risk factors that can be easily modified are excessive alcohol consumption, 
smoking, excessive body weight, and insufficient physical activity [1]. An unhealthy lifestyle leads to 
delayed seeking for healthcare, resulting in critical health conditions and yet more healthcare expenditure 
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[2]. [3] shows that heavy smoking has the largest possibility of experiencing at least one of 6 common 
chronic diseases, including congestive heart failure, chronic obstructive respiratory disease, diabetes, lung 
cancer, myocardial infarction, and stroke. Monitoring these factors can prove relevant to understanding the 
extent to which an individual’s lifestyle can be considered as healthy or not. The most prominent risk factors 
affecting a substantial amount of the world’s population are smoking and drinking, which can easily be 
traced using biomarkers that are affected by the extent of indulgence in these activities. In this proposal, we 
aim to identify the best approach to classify lifestyles into healthy or unhealthy based on biomarkers with 
the use of machine learning algorithms. We plan to test a group of algorithms and determine the best-
performing ones for this specific classification task, after which we will develop ensemble classifiers based 
on top-performing individual classifiers and apply feature engineering to increase the efficiency of the 
classifiers. 

III. RESEARCH DESIGN AND METHOD 
The problem at hand is to contribute an efficient and well-performing classification for lifestyle based 

on the biomarkers that can identify smokers and drinkers to facilitate early intervention. The challenges 
presented by this classification problem include finding an appropriate dataset with the right features that 
can produce unbiased results, identifying and optimizing relevant features, tuning hyperparameters of 
individual classifiers, selecting the right algorithms to benchmark, properly evaluating performance, and 
developing appropriate ensemble classifiers. As such, we are tasked with developing a method to address 
these challenges and satisfy our aims. These challenges in effect define our research design objectives. All 
of the files for this project including vector-based graphs, and Jupyter notebooks can be accessed from this 
site: http://blog.wangxm.com:8086/2023/12/aml23-final-project-lifestyle-prediction-via-biomarkers/.  

A. Related Works  
The modern society with an emphasis on efficiency and outcome could easily induce unhealthy lifestyles 

for people, especially college students. A study shows that many students, including graduate students in 
universities feel stressed [4]. In [5] the behavior of college students’ concurrent consumption of cigarettes 
and alcohol is studied and shows that stress and social environment among others are the potential risk 
factors for inducing concurrent drinking and smoking behavior. [6] discusses common factors for the 
consumption of nicotine and alcohol and how those chemicals affect the brain’s biochemical system 
interactively.  

Determining which variables and biomarkers contribute the most to predicting smokers and drinkers can 
guide our dataset selection process. Authors in [7] identified that biomarkers including HDL-cholesterol, 
triglyceride, total cholesterol, and body mass index were among the top twenty factors that contributed the 
most to alcohol prediction. Serum cotinine, urine NNAL and 3HC, nail nicotine, and hair nicotine were 
identified in [8] as indicators of active smoking. Cholesterol ratios and glucose levels were also found to be 
credible biomarkers for determining smoking status [9]. Various predictors including medical lab results 
like fMRI as well as non-medical related data including demographics, and social network data, are gathered 
to classify urges or behaviors of additions [10]. The study in [9] on the other hand concludes that smoking 
behavior causes higher aging rates despite factors like cholesterol ratios and fasting glucose levels between 
smokers and nonsmokers. 

Different procedures and approaches for identifying and optimizing relevant features have been 
proposed with some employing models that facilitate feature selection. [9] trains a set of supervised feed-
forward deep neural networks with anonymized blood profile dataset to predict the smoking status and 
aging effects, 320 random forest models are used for feature selection with maximum available samples, 
those selected features are used for training and predicting the purpose of the deep neural networks. In [11], 
a sliding window mechanism is employed to process live raw data to extract discrete time and frequency 
domain features, with the models producing a high prediction accuracy for smoking activity. 

http://blog.wangxm.com:8086/2023/12/aml23-final-project-lifestyle-prediction-via-biomarkers/
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It is also important to understand the effectiveness of different model implementations for this kind of 
classification to help narrow down our focus on identifying the most relevant ones. A systematic review 
[10] on the applications of addiction studies using machine learning summarizes 17 publications on 
addiction. For supervised learning, ensemble methods, regression, and classification are used, unsupervised 
learning and reinforcement learning are also included in the review. Decision trees, random forests, support 
vector machines, and neural network-based deep learning models were found to be widely employed for 
clinical observations because they are efficient at extracting patterns from patient data. [12] [13]. In [14], 
the K-Nearest Neighbor and logistic regression model performed similarly to decision trees when used for 
alcohol prediction. 

B. Methods 
To achieve our specific goals, we have carried out the following procedures:  

The raw dataset was prepared through pre-processing, involving data cleansing and in-depth exploration 
using exploratory data analysis to gain a deeper understanding. Outliers were identified and removed from 
the dataset. Following the removal of outliers, we proceeded with feature engineering, a process 
encompassing the encoding of label data and the extraction of new features from the original dataset. The 
overall data preprocessing steps are depicted in Fig. 1.  

 

 

Raw Data Exploratory 
Data Analysis

Outlier 
Detection 

and Removal

Feature 
Engineering

Feature 
SelectionFinal Dataset

 

Fig. 1. Overall data preprocessing steps 

After that, we applied feature selection techniques, such as Linear Discriminant Analysis (LDA), Random 
Forest, ANOVA, Kendall's Tau, and Mutual Information Gain to enhance model performance, decrease the 
possibility of overfitting and improve interpretability.    

To fulfill our first aim, the dataset was split into two portions, training, and testing. We experimented 
with both 80/20 and 70/30 percent training and testing split. To validate our training dataset, we applied k-
fold cross-validation for all the algorithms. After the first classification iteration, the performance of the 
model was checked based on the expected prediction. If the prediction is not accurate enough, 
hyperparameter tuning is done again until the output reaches expectations. Finally, the performances of the 
individual models are checked using the data reserved for testing. Because our dataset is quite large, 
containing approximately 1 million samples, we aimed to utilize as many samples as possible. Initially, we 
planned to experiment with all samples and 50% of the samples. However, due to constraints in 
computational resources and the need for hyperparameter tuning, we had to narrow down our sample size 
to a more manageable 20 thousand samples, randomly selected. 

 
In opting for random sample selection, our goal was to maintain the robustness and representativeness 

of our training dataset. Additionally, we sought to uphold the statistical validity of our machine learning 
models, fostering improved generalization and predictive performance on unseen data. This approach 
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allowed us to strike a balance between the need for comprehensive exploration and the practical constraints 
imposed by our resources. 

We have successfully attained our goal of achieving a minimum accuracy of 70 to 80% for all models 
through meticulous hyperparameter tuning. Notably, the Majority Voting Classifier, employing 'soft' 
voting, achieved an impressive F1-score of 80.15%, surpassing the performance of all individual classifiers. 
This accomplishment marks the success of our project. 

For our second goal, we took the best-performing individual classifiers and teamed them up to create a 
powerful ensemble classifier. The idea behind this was to enhance the model's ability to make predictions 
and surpass what the individual classifiers could achieve on their own. 

Following that, to achieve our third and final goal, we have applied feature engineering techniques to 
extract new features, for example, the Kidney Function Index was extracted from the serum creatinine, age, 
and sex features. It helped us to create an efficient classifier to better enhance the outcomes of the lifestyle 
predictions.   

The flowchart in Fig. 2 illustrates our workflow. 

Data 
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ML Models
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Outlier Detection
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Fig. 2. Flowchart of our proposed workflow 
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C. Dataset 
The dataset, “Smoking and Drinking Dataset with body signal” is taken from Kaggle which is originally 

collected from the National Health Insurance Service in Korea [30]. It has a total 24 features (sex, age, 
height, weight, waistline, sight_left, sight_right, hear_left, hear_right, systolic bood pressure (sbp), 
diastolic blood pressure (dbp), blds, total cholesterol, high-density lipoprotein cholesterol, low-density 
lipoprotein cholesterol, triglyceride levels, hemoglobin, urine protein, serum creatinine, aspartate 
aminotransferase, alanine transaminase, gamma-glutamyl transferase, smoking status, alcohol 
consumption indicator) and around 1 million samples. The dataset manifests inherent imbalances across 
its features, with discernible disparities among its constituent attributes. Particularly, the feature denoted 
as "sex" displays a comparatively equitable distribution, while the "hear_left" and “hear_right” features 
emerge as the most conspicuously imbalanced, as illustrated in Fig. 3(a) and Fig. 3(b) respectively. For 
our imbalanced dataset, the F1-score is an important performance metric in addition to the accuracy score.  

  

                       
(a)                                                                  (b) 

Fig. 3. (a) Number of male and female participants in the dataset and (b) number of participants having 
normal (1) and abnormal (2) hearing.  

After classifying into the various states of drinking and smoking, we have combined the two features, 
smoking state, and drinking state, into healthy and unhealthy lifestyles as explained in Table I below: 

TABLE I.  LIFESTYLE PREDICTION 

Smoking State Drinking State Lifestyle 
Never No Healthy 
Used to smoke but quit No Healthy 
Still Smoke No Unhealthy 
Never Yes Unhealthy 
Used to smoke but quit Yes Unhealthy 
Still Smoke Yes Unhealthy 

 
 

D. Data Preprocessing 
Data preprocessing is the foundation for evaluating machine learning algorithms, and properly handling 

the data before feeding into the models. This part focuses on how the dataset is preprocessed before being 
fed into the machine-learning models for prediction purposes. The following steps were carried out 
sequentially: 

1. Changing the dataset format from CSV to Parquet: 
The original dataset was in CSV format with around a million samples and more than 100 MB file 
size. We have converted the CSV file to a parquet file. To enhance processing speed and achieve 
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efficient data compression while retaining the integrity of the original data, we opted to convert the 
CSV file to the Parquet file format. The advantages of employing the Parquet format are 
highlighted by a comparison between the CSV and Parquet file formats, detailed in Table II. 

TABLE II.  CSV VS PARQUET COMPARISON 

File Type Reading Speed File Size 
CSV 1.71 seconds 104.49 MB 

Parquet 70.6 milliseconds  17.09 MB 
 
From Table II, we can conclude that the parquet file format is 22.22 times faster and 6.11 times 
more compressed compared to the CSV file format while preserving the original data. 
 

2. Outlier Detection and Removal 
Outliers were identified in the dataset and addressed using two distinct methods: 

a) Visual examination of data through box plots, utilizing the Interquartile Range (IQR) 
b) Implementation of Z-Score 

 
a) Visual examination of data through box plots, utilizing the Interquartile Range (IQR) 

We have employed Tukey’s Fence Method to identify potential outliers in the dataset based on the 
spread of the data. In Tukey's boxplot, outliers are identified based on the interquartile range (IQR), 
which is the range between the first quartile (Q1) and the third quartile (Q3) of the data. The 
"fences" in Tukey's method are used to determine the range within which data points are considered 
typical, and points beyond these fences are flagged as potential outliers. The upper and lower bound 
of the fence is defined as follows: 
 
Upper Bound: Q3 + 1.5 x IQR 
Lower Bound: Q1 – 1.5 x IQR 
 

 
 

Fig. 4. Tukey’s Fence Method for Outlier Detection [32] 

We have found outliers in 15 out of 24 features. The features with outliers are: waistline, sight_left, 
sight_right, sbp, dbp, blds, tot_chole, hdl_chol, ldl_cho, triglyceride, urine_protein, serum_creatinine, 
sgot_ast, sgot_alt, gamma_gtp. 

For plotting the boxplot with IQR we have tied considering the first quartile, Q1 as the 25 percentile, 
and the third quartile, Q3 as the 75 percentile. Fig. 5 shows the boxplot with Tukey’s Fence Method 
for waistline (cm) with 25% to 75% as IQR.  
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Fig. 5. Boxplot with Tukey’s Fence Method for waistline with 25% to 75% as IQR 

As seen from the data, there are some clear outliers. However, using 25% to 75% as IQR also considers 
some real values as outliers, for example, a waistline of more than 108.35 cm is considered to be an 
outlier. We improved it by considering the IQR range from 5% to 95% by which we can incorporate 
more than 99% of data from all features. As an example boxplot with Tukey’s Fence Method for 
waistline with 5% to 95% as IQR is depicted in Fig. 6. 

 

Fig. 6. Boxplot with Tukey’s Fence Method for waistline with 5% to 95% as IQR 

Outliers 

Outliers 
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b) Z-Score 
We have also used the Z-score in addition to the IQR method to find the potential outliers and data 
distribution in our dataset. It is a statistical method used to identify outliers in a dataset by 
measuring how far individual data points deviate from the mean in terms of standard deviations. 
Calculating Z-scores for each data point allows us to pinpoint outliers beyond a set threshold. 
Outliers represent data points significantly differing from the average, and the Z-score provides a 
quantifiable measure of this deviation, enabling nuanced assessments of data variability. 
 
The Z-Score for a data point, X in a dataset with mean, µ and standard deviation, σ is calculated 
using the following formula: 

𝑍 = 𝑥−𝜇
𝜎

  
 

We utilized Z-score outlier detection across all features, yielding results comparable to the IQR 
method. Through experimentation with deviations of 6σ, 8σ, and 10σ, we observed that a 10σ 
threshold enables the preservation of over 99% of data for each feature while effectively removing 
outliers. This stringent threshold ensures robust outlier identification, contributing to the 
refinement of our dataset. Fig. 7 depicts the Z-scores and normal distribution for the waistline 
measured in cm. 
 

 
 

Fig. 7. Z-scores and Normal Distribution for waistline with 10σ Standard Deviation 

The outliers are not concentrated on a particular portion of the dataset, rather it is spread over the 
whole dataset as shown in Fig. 8.  

Outliers 
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Fig. 8. Z-scores and Outlier Samples 

3. Correlation and Nullity Check of the Dataset 
  We have also checked the correlation between the features to see how they are correlated to each 
other. Fig. 9 shows the correlation matrix of our dataset. 

 

Fig. 9. Correlation Map for the Original Dataset 

Outliers 
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From the correlation map, we can see that there is not much correlation between the features. (Low-
density lipoprotein Cholesterol (LDL_chole) and Total Cholesterol (tot_chole) show the maximum (0.88) 
amount of correlation as expected since total cholesterol is derived from LDL cholesterol. There is no 
correlation between the hearing condition and Gamma-Glutamyl Transferase (gamma_GTP). 

Finally, we have checked the nullity bar diagram to check whether there is any missing value in our 
dataset. The nullity bar graph is depicted in Fig. 10. 

 

Fig. 10. Nullity Bar Diagram to Check for the Missing Data 

From the graph, it can be seen that there is no missing data in our dataset. Therefore, we don’t need to 
do any data imputation for the missing data.  

E. Feature Engineering  
We will employ feature engineering techniques to optimize features to improve the performance of our 
models.  
Table III shows some features and the equations that we will be using in training our models. 

TABLE III.  EQUATIONS FOR FEATURE ENGINEERING 

Feature Key Variables  Equation Description 

Kidney 
Function Index 

(Glomerular 
Filtration Rate 

- eGFR) 

Urine Protein, 
Serum Creatinine 

(Scr), age, and 
gender 

142 * (min(standardized Scr/K, 1)α) * 
(max(standardized Scr/K, 1) - 1.200) * 

0.9938Age * 1.012 [if female] 
 

K = 0.7 (females) or 0.9 (males) 
α = -0.241 (females) or -0.302 (males) 

[27] 

eGFR is an 
overall kidney 
function index 
that gives an 
assessment of 

kidney function 
which can help 

monitor 
conditions that 

can harm kidneys 
(including high 
alcohol intake) 

[28] 
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Total 
Cholesterol 
HDL Ratio 

Low-density 
lipoprotein 
cholesterol 

(LDL), high-
density 

lipoprotein 
cholesterol 

(HDL), 
triglycerides(Tri) 

Total Cholesterol/HDL 
or 

(𝐻𝐷𝐿 + 𝐿𝐷𝐿 + 0.2 ∙ 𝑇𝑟𝑖)
𝐻𝐷𝐿

 

Total cholesterol 
HDL ratio gives 
in indication of 
heart health due 
to presence of 

good cholesterol 
levels (HDL) 

[29]. Cholesterol 
levels are 

influenced by 
lifestyle choices 

including alcohol 
consumption. 

Cardiovascular 
Health Index 

Triglyceride 
HDL Ratio, Total 
Cholesterol HDL 

Ratio, Blood 
Pressure 

Index(BPI) 

( Tri
𝐻𝐷𝐿 + (𝐻𝐷𝐿 + 𝐿𝐷𝐿 + 0.2 ∙ 𝑇𝑟𝑖)

𝐻𝐷𝐿 + 𝑠𝑏𝑝
𝑑𝑏𝑝)

3
⁄  

This is a metric 
that sums up the 

health of the 
cardiovascular 
system (CV), 

taking into 
account factors 
including food, 

physical activity, 
blood pressure, 
glucose, total 
cholesterol, 

smoking, and 
body mass index. 

Liver Function 
Index 

Enzyme levels: 
Aspartate 

Aminotransferase 
(AST), Alanine 
Transaminase 
(ALT), and 

Gamma-
Glutamyl 

Transferase 
(GGT) 

(𝐴𝑆𝑇
𝐴𝐿𝑇 + 𝐺𝐺𝑇

𝐴𝑆𝑇)
2

⁄  

Liver function 
index monitor the 

enzyme levels 
produced by the 
liver to assess its 

overall health 
[29]. 

 

F. Feature Selection 
 

After the essential data outliner removal and EDA process, feature engineering, the feature selection 
technique is employed as there are more than 50 features, including numerical features, binary categorical, 
and one hot categorical feature.  
For the feature selection process, several methods including ANOVA, Mutual information gain, Kendall’s 
Tau, Linear Discriminant Analysis (LDA), and Random Forest based feature weights are applied. Table 
IV shows the equations of the feature selection techniques used. 
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TABLE IV.  FEATURE SELECTION TECHNIQUES 

 
Feature 

Selection 
Technique 

Equation Key Variables 

ANOVA 1. F = 𝑀𝑆𝐵
𝑀𝑆𝑊

 
F = F-statistic 
MSB = Mean Square Between Groups 
MSW = Mean Square Within Groups 

Mutual 
Information 
Gain 

2. 𝑀𝐼(𝑋, 𝑌) = ∑ ∑ 𝑃(𝑥, 𝑦)𝑦∈𝑌𝑥∈𝑋 ⋅
log ( 𝑃(𝑥,𝑦)

𝑃(𝑥)⋅𝑃(𝑦))] 

P(x, y)) = Joint Probability Mass Function of X and 
Y 
P(x) and P(y) = Marginal Probability Mass 
Functions of X and Y Respectively 

Kendall's 
Tau 3. τ = 𝑛𝑐−𝑛𝑑

𝑛
, where n = nc + nd nc = Number of Concordant Pairs 

nd = Number of discordant Pairs 

LDA 4. 𝑤 = 𝑆𝑤
−1(𝑚1 − 𝑚0) 

Sw = Within-Class Scatter Matrix 
m1 and m0 = Means of The Feature Vectors for 
Class 1 and Class 0, Respectively 

Random 
Forest 

5. 𝐹𝑒𝑎𝑡𝑢𝑟𝑒 𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 =
1
𝑁

∑ 𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒_𝑖𝑁
𝑖=1  

N = Number of Decision Trees In The Random 
Forest 

 
Among all those methods, Linear Discriminant Analysis needs the input predictors to be standardized. 

The following graph shows the scaled importance values among all features ranked by “ANOVA” scores. 
It should also be noticed that the absolute values for two metrics which are marked with “ABS” in the 
legends are using absolute values for better illustration as well as ranking purposes later on. The Linear 
Discriminant Analysis legend is also annotated with “STD” to indicate the features columns are 
standardized before the Linear Discriminant Analysis. Since this project aims at binary classification, the 
parameter is easier to assign for LDA. Even though standardization is experimented on each of the metrics, 
only the LDA plot has the most significant change in terms of plot shape, without standardization, one 
feature will have an extremely large weight compared to all other remaining features. The standardization 
is mandatorily applied for some machine learning models’ training and predicting tasks. 

 
After serious consideration of the selected features, categorical features are removed for the following 

reasons: categorical features in selected features will also have their corresponding numerical features, for 
example: categorical features like “AGE_CAT” depend on the numerical “age” feature; in addition, such 
one-hot encoded columns would not provide enough information than numerical columns. As the 
categorical features generated by original numerical features are removed, 40 features remain. When 
considering the cumulative contribution of each feature based on all the feature importance measurements 
and by aiming to maintain at least 80% of all feature weight, 25 out of 40 features will be selected. After 
consulting with other group members on the feature selection process, three features with higher 
importance scores: “SIGHT”, “AVG_SIGHT” and “gamma_gtp” are replaced by three other features with 
lower importance scores “CARDIOVASCULAR_HEALTH_INDEX”, “WHT_R”, “HEAR” with the 
concern that those replaced features would be represented by the some of the remaining 22 features, thus 
this is the only part of the process applied manually based on 5 of the feature importance measurements. 
Fig.11 shows the normalizd importance scores for feature selection. 
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Fig. 11. Normalized Importance Scores for Feature Selection 

The feature importance shown above shows that there are features where not all metrics have similar 
values. For example, one feature’s importance is high for Random Forest based feature selection method, 
but other metrics are low. After serious consideration, this feature will be included and the metric from 
specific feature selection method will not be regarded as an outliner and discarded. With this idea into 
consideration, the feature selection based on the feature importance is done as follows: 

◼ Store name of features in a list data structure. 
◼ For each measurement metric, 5 highest features will be selected, append each of the feature in 

the list data structure. 
◼ If one feature is already stored in the feature list data structure, the next lower ranked feature will 

be selected and compared with the feature list, until all 5 features are added for a measurement 
metric. 

◼ As the feature list contains 25 items, sum value for each of the feature will be used to rank the 25 
features in the list data structure, those ranked features will be used for testing machine learning 
models’ performance. 

 

G. Selection of models 
Different machine learning models will be evaluated to determine the peak-performing ones, informing 

us of the best approach for healthy or unhealthy lifestyle prediction using the selected dataset. The models 
were selected based on their unique advantages for classification based on prior literature. 
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A brief explanation of all the models to be used is described below: 
 

1. Logistic Regression 
Logistic regression is a supervised machine learning algorithm mainly used for classification 
problems. Logistic regression uses the logistic function, also known as the sigmoid function, to 
model the relationship between the input features and the probability of the binary outcome. The 
shape of the sigmoid function is S-shaped and is responsible for limiting the output of the cost 
function so that it can map its output between 0 and 1 [15]. Logistic regression is fundamentally a 
regression model that employs regression techniques to estimate the probability of a specific data 
point or entry belonging to a particular category [16]. The sigmoid function is given by [17]:  
 

                                                                      𝑃( 𝑌 = 1 ∣ 𝑋 ) = 1
1+𝑒−(𝑏0+𝑏1𝑋)                                                           (1)      

                                                         
2. Decision Tree 

A decision tree is a machine learning algorithm where each node shows a feature (attribute), each 
link (branch) shows a decision (rule) and each leaf shows an outcome (categorical or continuous 
value). There are two nodes in a decision tree, namely, the Decision Node and the Leaf Node. 
Decision nodes have multiple branches and are used to make decisions. Leaf nodes on the other 
hand give the outcomes of those decisions and do not create any additional branches or decisions 
[18]. It has a tree-like structure that begins with a root node and proceeds to develop additional 
branches, forming a structure resembling a tree. Attribute selection measures (ASMs) are 
techniques employed in decision tree algorithms to identify the most suitable attributes or features 
for partitioning data at each internal node of the tree. These measures aim to determine the attribute 
that offers the highest amount of information or discriminative power for classifying or predicting 
the target variable. There are multiple ways by which ASM can be measured, for example, 
information gain, Gini index, etc. 
Information gain (IG) quantifies the alteration in entropy that occurs when a dataset is divided 
using a particular attribute [19]. It is given by: 
 

                                                        𝐼𝐺(𝑆, 𝐴) = 𝐸(𝑆) − ∑ |𝑆𝑣|
|𝑆|v∈Values (𝐴) 𝐸(𝑆𝑣)                                           (2)  

 
Where E (S) is the current entropy of the subset S, before splitting. |S| is the number of instances 
in S and A is an attribute in S. 
The Gini index is a metric employed within the CART (Classification and Regression Tree) 
algorithm to evaluate the level of impurity or purity during the formation of a decision tree and is 
given by the following equation [20].  
 

                                                              𝐺𝐼𝑁𝐼 𝐼𝑛𝑑𝑒𝑥 (𝐿) = 1 − ∑ 𝑝𝑖
2𝑗

𝑖=1                                                        (3)   
                                     

Where, 𝑝𝑖 is the relative frequency of class 𝑖 at the node 𝐿. 
 

3. Naïve Bayes 
The Naïve Bayes classifiers [21] are a group of Bayes’ theorem-based probabilistic classifiers. 
Naïve describes the notion that strong independence assumptions between features are applied in 
these types of classifiers. Many types of Naïve Bayes classifiers like Gaussian naïve Bayes, 
multinomial naïve Bayes as well as Bernoulli naïve Bayes classifiers are used depending on the 
type of data thanks to their simplicity, efficiency as well as scalability. 
Naïve Bayes is shown as follows with 𝐶𝑖 for class 𝑖 of 𝐼 total classes and 𝒙 = (𝑥1, 𝑥2, ⋯ 𝑥𝑁) which 
is the vector that contains 𝑁 features: 
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                                                                         𝑝(𝐶𝑖|𝒙) = 𝑝(𝒙|𝐶𝑖)𝑝(𝐶𝑖)
𝑝(𝒙)                                                              (4) 

 
Where, 𝑝(𝐶𝑖|𝒙) is the posterior probability, 𝑝(𝐶𝑖) is the prior probability, 𝑝(𝒙) is the evidence and 
𝑝(𝒙|𝐶𝑖) is named likelihood. When considering the nominator of the above equation which is 
related to 𝐶𝑖 together with the naïve assumption, it could be written as follows: 
 

                                                          𝑝(𝒙|𝐶𝑖)𝑝(𝐶𝑖) = 1
𝑝(𝒙) 𝑝(𝐶𝑖) ∏ 𝑝(𝑥𝑛)𝑁

𝑛=1                                            (5) 
 

Thus, the classifier would assign the class as its prediction based on all input features using the 
following rule to minimize misclassification probability: 
 

                                                            �̂� =
argmax

𝑖 ∈ {1, ⋯ , 𝐼}𝑝(𝐶𝑖) ∏ 𝑝(𝑥𝑛)𝑁
𝑛=1                                               (6) 

 
4. K-Nearest Neighbors (KNN)  

KNN uses proximity to make predictions about a particular data point, making the assumption that 
similar points are found near each other. The technique finds ‘K’ training samples with similar 
attributes to test samples. The training samples are described as Nearest Neighbors.  The smaller 
the value of ‘K’, the greater the likelihood of overfitting [16] [22]. 
 

5. Support Vector Machine (SVM) 
The objective of support vector machines is to create a decision boundary, known as a hyperplane, 
between two classes such that the hyperplane is far enough from the closest data point called 
support vectors. Support Vector Machines allow predictions to be made from one or more feature 
vectors [23]. SVM uses linear models to implement non-linear class boundaries.  
Given a dataset (𝑥1, 𝑦1), ⋯ , (𝑥𝑖, 𝑦𝑖), ⋯ , (𝑥𝑛, 𝑦𝑛),  𝑥𝑖 ∈ 𝑅𝑑 and 𝑦 ∈ (−1, +1) 
where xi = feature vector and yi = class label  
 
The hyperplane can be described as: 
 

                                                                             𝑤 ∙ 𝑥𝑖
𝑇 + 𝑏 = 0                                                                  (7) 

 
where w = weight vector, x = input feature vector, and b = bias 
 
 

{
𝑤 ∙ 𝑥𝑖

𝑇 ≥ +1    𝑖𝑓 𝑦 = +1
𝑤 ∙ 𝑥𝑖

𝑇 ≤ −1       𝑖𝑓 𝑦 = −1 

SVM finds ‘ 𝑤’ and ‘ 𝑏’ such that the hyperplane separates the data with a margin of 1 ‖𝑤‖2⁄  

The values of vector 𝑥𝑖 for which |𝑦𝑖|(𝑤𝑥𝑖
𝑇 + 𝑏) = 1 are termed as support vectors [23]. 

 
6. Multi-Layer Perceptron (MLP) 

MLP is a neural network model with multiple inputs and output layers where stacked neurons 
receive inputs, assign weights, and combine the weights and inputs in a weighted sum with arbitrary 
activation functions to compute the output value [24].  
 
The learning mechanisms used in MLP include propagating the weighted sum linear combination 
to the next layer up until the output through feed forwarding. The weights needed to minimize the 
cost function are adjusted through backpropagation. This is done in an iterative fashion until the 
weights are adjusted and until the cost function is minimized to achieve an optimal accuracy. 
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In feedforwarding, the Mean Squared Error will be calculated while in backpropagation, the 
gradient will be computed [24]. 
 

7. Ensemble Learning 
In the realm of machine learning, ensemble methods combine various algorithms to achieve 
improved results and performance compared to individual algorithms used in isolation. While a 
statistical ensemble can be infinitely large, a machine learning ensemble consists of a finite set of 
diverse models, providing greater flexibility and versatility in leveraging these alternative 
approaches [25]. A Voting Classifier is a machine learning approach that combines multiple 
models into an ensemble to improve the accuracy of predictions. It consolidates the results, which 
are then fed as input into the Voting Classifier, aiding in making predictions by following a 
majority voting approach. This approach avoids the need for individual model creation and their 
accuracy calculations. It generates predictions by favoring the majority vote for each outcome [26]. 
 

IV. EVALUATION PROCEDURE AND PERFORMANCE MEASURES 
 
Performance Metrics [31] 
 

1. Confusion Matrix: The confusion matrix summarizes the classified instances in a table so the 
performance of the model can be easily visualized and assessed. It facilitates easy calculation of 
accuracy, precision, recall, and F1-score. 
We will consider a “healthy” prediction to be positive and an “unhealthy” prediction to be negative. 
Table V shows the lifestyle prediction confusion matrix. 

TABLE V.  LIFESTYLE PREDICTION CONFUSION MATRIX 

 Actual State 
  Healthy Unhealthy 

Predicted Score Healthy True Positive (TP) False Positive (FP) 
Unhealthy False Negative (FN) True Negative (TN) 

 
 

TP = Number of true-positive predictions 
FP = Number of false-positive predictions 
TN = Number of true-negative predictions 
FN = Number of false-negative predictions 

 
2. Accuracy: This is a ratio of the correctly classified instances to the total number of instances in 

the dataset. We expect an accuracy of at least 70 – 80% for well-performing models. 

                                                                   Accuracy  = TP+TN
TP+TN+FP+FN

                                                     () 

3. Recall: This is a ratio of correctly predicted positive instances to the total classified instances. 
 

                                                                          Recall = 𝑇𝑃
𝑇𝑃+𝐹𝑁

                                                                (9) 
 

4. Precision: This is a ratio of correctly predicted positive instances to the total number of positive 
instances. 

                                                                       Precision = TP
TP+FP

                                                              (10) 
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5. F1 Score: This is a harmonic means of recall and precision.  
 
                                                               F-measure = 2 × Recall × Precision

Recall + Precision
                                              (11) 

 
6. ROC Curve and AUC: An ROC curve, short for the Receiver Operating Characteristic curve, is 

generated by graphing True Positives (TP) against False Positives (FP) across various threshold 
settings. The ROC curve is created by plotting the cumulative distribution function of True 
Positives on the y-axis against the cumulative distribution function of False Positives on the x-axis.  
The model's ability to distinguish between classes improves with higher Area Under the Curve 
(AUC) values.  
We will consider an AUC value of at least 0.85 to be appropriate since we are handling medical 
data. 

7. Mean Squared Error (MSE): The Mean Squared Error evaluates how close a regression line is 
to a given set of data points. It calculates the mean of the squared discrepancies between the 
predicted and actual values. Smaller MSE values signify superior model performance as they 
reflect reduced prediction errors. MSE is given by the following equation: 
 

                                                                 MSE = 1
𝑁

∑ (𝑦𝑖 − 𝑦�̂�)2𝑁
𝑖=1                                                   (12) 

Where, N is the number of samples, yi is the actual (observed) value of the ith data point and ŷi is 
the predicted value of the ith data point. 

 

V. EXPERIMENTAL DESIGN 

A. Experimental Setup 
a) Quantitative Analysis:  

i. Stochastic sampling using half of the data: Since our dataset contains around a million samples, 
to minimize the training time, we will stochastically sample 50% of our dataset.  

ii.   Taking the full dataset: We will retrain our model with the full dataset to evaluate whether taking 
the full dataset can improve the model’s accuracy or not.  

iii. Train-test split: We will split our dataset between train and split with two different proportions as 
follows: 

a. 80% training and 20% testing 
b. 70% training and 30% testing 

   We will try to evaluate which of the above-mentioned ratio work best for our models.  
b) Cross-Validation: 

Cross-validation is a machine-learning technique that splits the data into two different subsets, one 
is used for training and the other is used for validation. This process is repeated multiple times 
using different validation sets and averaging the evaluation metrics for improving the performance 
estimation. There are various types of cross-validation techniques, such as k-fold cross-validation, 
leave-one-out cross-validation (LOOCV), etc. In our experiment, we will be using the k-fold cross-
validation technique. We will do the following k-fold cross-validation techniques in our 
experiments: 

1. 5-fold cross-validation   
2. 10-fold cross-validation 

c) Server setup: 
The software environment needs to be installed on remote servers for running machine learning 
models, especially for users who do not have administrator’s privilege and the systemwide Python 
environment is outdated or the Anaconda suite is not installed. This guide 
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http://blog.wangxm.com:8086/2023/11/install-and-use-jupyter-notebook shows the steps for 
setting up the Anaconda machine learning environment for running Python-based Jupyter notebook 
on a remote server via a web service, the service could be transmitted through a secure shell 
connection to obtain better computing resources with the specific setup to navigate through the 
clusters http://blog.wangxm.com:8086/2023/11/tunneling-among-clusters. For this project, 
python-based machine learning packages like ‘pandas’, ‘numpy’, ‘matplotlib’, ‘plotly’ as well as 
the foundational library named sci-kit learn are used. This tutorial 
http://blog.wangxm.com:8086/2023/10/a-tutorial-on-scikit-learn/ gives step-by-step guidelines on 
how to use scikit-learn to run basic machine learning models like Naïve Bayes, Logistic 
Regression, Random Forest as well as Neural Network or Multilayer Perceptron on the Iris dataset 
for multi-class classification tasks. 

B. Experiments on Machine Learning Models 
1. Logistic Regression 

 
The first machine learning model that we used was Logistic Regression for classifying our data 

between healthy and unhealthy lifestyles. Logistic regression uses the logistic function (also known as the 
sigmoid function) to model the probability of an instance belonging to the positive class. Fig. 12 illustrates 
the sigmoid decision boundary between Gamma_GTP/AST, Hemoglobin_A1C for two different angles. 
We have used 1000 random samples to plot the 3D diagram. 

 
                                      (a)                                                                            (b) 

Fig. 12. Features Separated by a Sigmoid Decision Boundary for two different viewing angles (a) Elev: 
9°, Azim: 18° (b) Elev: 18°, Azim: 54°  

For logistic regression algorithm we have executed several experiments to achieve good accuracy and 
F1-scores. The following experiments were carried out: 

a) Conducting a quantitative analysis on both the entire dataset and a randomly sampled 50% 
subset. 

b) Exploring variations with all 25 features, 13 features (50% subset), and 7 features (25% subset). 
c) Utilizing different train vs. test splitting ratios, specifically 80/20 and 70/30. 
d) Implementing 5-fold and 10-fold cross-validation techniques. 
e) Performing hyperparameter tuning through Grid Search CV, Randomized Search CV, and 

Bayesian Search CV. 
f) Employing L1 (Lasso) and L2 (Ridge) regularization techniques to mitigate overfitting in the 

model. 
 

From our experiments we had found that the 80/20 train-test split ratio exhibited superior performance 
compared to the 70/30 split ratio. The application of L1 (Lasso) and L2 (Ridge) regularization, coupled 

http://blog.wangxm.com:8086/2023/11/install-and-use-jupyter-notebook
http://blog.wangxm.com:8086/2023/11/tunneling-among-clusters
http://blog.wangxm.com:8086/2023/10/a-tutorial-on-scikit-learn/
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with 5-fold and 10-fold cross-validation, yielded nearly identical results. Moreover, the performance 
metrics remained consistent across hyperparameter tuning methods, including Grid Search CV, 
Randomized Search CV, and Bayesian Search CV. Consequently, we have reported the results in Table 
VI based on the 80/20 train-test split ratio for the 50% of our dataset, employing 5-fold L1 regularization 
and the Bayesian Search hyperparameter tuning method. We also showed the results for taking all 25 
features, 13 features, and 7 features. 

TABLE VI.  PERFORMANCE METRICS FOR LOGISTIC REGRESSION ALGORITHM 

 
 Bayes Bayes Bayes 
 25 Features 13 Features 7 Features 

C 0.0264 0.0026 0.0125 
Accuracy 74.96% 74.74% 74.51% 
Precision 76.69% 76.53% 76.52% 

Recall 78.04% 77.75% 77.15% 
F1 77.36% 77.14% 76.84% 

MSE 0.2504 0.2526 0.2549 
AUC-ROC 0.8220 0.8187 0.8144 
Confusion 

Matrix 
[30772 12229] 
[11463 40663] 

[30572 12429] 
[11598 40528] 

[30661 12340] 
[11910 40216] 

 
From the table above, we can conclude that the performance remains similar when we use at least 50% 

features from our dataset. After experimenting with different parameters as discussed before, we achieved 
77.36% and 74.96% F1-score and accuracy respectively. The regularization parameter “C” was in range 
from 0.0026 to 0.0264 indicating a stronger regularization. In other words, the algorithm tried to simplify 
the model by penalizing large coefficients, which helped to prevent overfitting. 

The Area under the Receiver Operating Characteristic ROC curve for Logistic Regression indicating 
its values for three different hyperparameter tuning methods is illustrated in Fig. 13. The highest AUC-
ROC value, 0.820, was achieved when considering all 25 features indicating a “good” classification ability. 
AUC-ROC is a measure of how well a model distinguishes between classes, specifically the trade-off 
between recall or sensitivity (true positive rate) and fall-out (false positive rate). 

 

 
Fig. 13. Receiver Operating Characteristic (ROC) curve for Logistic Regression indicating its values for 

three different hyperparameter tuning methods  
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Overall, the performance metrics can be summarized as follows: 
1. Accuracy: 74.96% 
2. Precision: 76.69% 
3. Recall: 78.04% 
4. F1-Score: 77.36% 
5. MSE: 0.2504 
6. AUC-ROC: 0.8220 
7. Confusion Matrix 
    [30772 12229] 
    [11463 40663] 

 
2. Decision Tree 
In the implementation of the decision tree algorithm, the following steps were taken:  

- Preliminary Training and Performance Evaluation 
- Manual Hyperparameter Tuning 
- Performance Evaluation with Manually Tuned Hyperparameters 
- Hyperparameter Tuning Using GridSearchCV, RandomizedSearchCV, and BayesianCV  
- Performance Evaluation with GridSearch, RandomizedSearch, and Bayesian Tuned  
 

a) Preliminary Training and Performance Evaluation  
Using a sample size of 20000, a preliminary classification tree was built and trained with the 

performance from predictions using the testing dataset presented. Fig. 14 shows confusion matrix of 
preliminary Decision Tree classifier. 
 

 
Fig. 14. Confusion Matrix of Preliminary Decision Tree Classifier  

b) Manual Hyperparameter Tuning 
For manual hyperparameter tuning, the alpha, maximum depth, and maximum number of leaf 

nodes were selected.  
The ideal value for 5-fold (and 10-fold cross validation) for the alpha parameter was determined by 
extracting the various alpha values accessible for the decision tree (leaving out the maximum alpha 
value because it would prune all the leaves) and then plotting a graph of the various alpha values with 
their corresponding mean accuracies to select the alpha value with the highest mean accuracy (Fig. 15 
and 16). The best alpha value used for model evaluation was the alpha value with the highest accuracy 
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score out of the ideal values from 5-fold and 10-fold cross validation. The various alpha values can be 
found in Table VII. 

 
Fig. 15. Graph showing plot of alpha versus mean accuracy for 5-fold cross validation  

 

 

Fig. 16. Graph showing plot of alpha versus mean accuracy for 10-fold cross validation  

Determining the ideal maximum depth for 5-fold cross validation (and 10-fold cross validation) 
involved plotting finding the range of maximum depths available for this dataset (a minimum of 1 to 
the determined highest maximum depth value possible) and plotting two graphs; a graph of the 
maximum depth values versus the corresponding accuracies for the training and training datasets and 
a graph of the maximum depth values versus the corresponding prediction errors for the training and 
training datasets (Fig. 17 and 18). The ideal value for both 5-fold and 10-fold cross validation was 
selected based on the maximum accuracy (or minimum error) for the testing data - this is also the point 
where both training and testing plots intersect. The selected value can be found in Table VII. 
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Fig. 17. Graph showing plot of max. depth versus prediction accuracy for training and testing dataset  

 
Fig. 18. Graph showing plot of max. depth versus prediction error for training and testing dataset  

Similar to the alpha parameter, the ideal value for 5-fold (and 10-fold cross validation) for the 
maximum leaf nodes parameter was determined by finding the range of maximum leaf nodes possible for 
this dataset (a minimum of 2 to the determined highest maximum leaf nodes value possible) and then 
plotting a graph of the various maximum leaf nodes values with their corresponding mean accuracies to 
select the value with the highest mean accuracy (Fig. 19 and 20). The best maximum leaf nodes value used 
for model evaluation was the one with the highest accuracy score out of the ideal values from 5-fold and 
10-fold cross validation. The various maximum leaf nodes values can be found in Table VII. 
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Fig. 19. Graph showing plot of max. leaf nodes versus mean accuracy for 5-fold cross validation  

 
Fig. 20. Graph showing plot of max. leaf nodes versus mean accuracy for 10-fold cross validation  

TABLE VII.  IDEAL PARAMETERS FOR MANUAL HYPERPARAMETER TUNING 

 5-fold cross 
validation 

Accuracy 
with 5-
fold CV 

10-fold cross 
validation 

Accuracy 
with 10-fold 

CV 

Selected 
Parameter 

Value 
Ideal Alpha  0.0007 0.7444 0.0005 0.7426 0.0007 

Ideal Max Depth - - - - 4 
Ideal Max. Leaf Nodes 23 0.7440 35 0.7438 23 

 
c) Performance Evaluation with Manually Tuned Hyperparameters 

Decision tree classifiers were built each with the considered parameters for hyperparameter tuning 
set to the selected ideal values. The results are summarized in Table VIII and the individual confusion 
matrix for the classifier trees built with the ideal alpha, max depth, and max leaf nodes values in Fig. 21, 
22 and 23 respectively. 
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Fig. 21. Confusion Matrix of Decision Tree Classifier with Alpha Set To The Ideal  

 
Fig. 22. Confusion Matrix of Decision Tree Classifier with Max. Depth Set To The Ideal  
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Fig. 23. Confusion Matrix of Decision Tree Classifier with Max. Leaf Nodes Set To The Ideal  

TABLE VIII.  PERFORMANCE EVALUATION OF DECISION TREE WITH IDEAL 
HYPERPARAMETER VALUES 

 Accuracy Precision Recall  
F1 Score 

Weighted 
F1 Score 

Area 
Under 
ROC 
curve 

Mean 
Squared 

Error 

Ideal Alpha  0.7368 0.7453 0.8030 0.7731 0.7349 0.8095 0.2632 
Ideal Max 

Depth 0.7405 0.7475 0.8084 0.7768 0.7385 0.8108 0.2595 

Ideal Max. 
Leaf Nodes 0.7390 0.7399 0.8214 0.7785 0.7360 0.8118 0.2610 

 
 

d) Hyperparameter Tuning Using GridSearchCV, RandomizedSearchCV, and BayesianCV 
The criterion for node level selection, maximum depth, minimum samples split, and maximum leaf 

nodes parameters were optimized using grid search by creating an instance of a search object (with a 
decision tree classifier and the hyperparameters) and conducting a search over the parameter space given 
for the individual hyperparameters.  

The options given for the various hyperparameters are specified below:  
Criteria: gini and entropy 
Maximum Depth: 1 – 21 
Minimum Samples Split: 2 – 11 
Maximum Leaf Nodes: 3 - 36 

 
After doing the search, the ideal parameters for the various search techniques are summarized in Table 
IX below: 
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TABLE IX.  IDEAL HYPERPARAMETER VALUES FOR GRIDSEARCHCV, 
RANDOMIZEDSEARCHCV, AND BAYESSEARCHCV 

 Criterion Max. Depth Max. Leaf Nodes Min. Samples Split 
GridSearchCV gini 5 19 2 

RandomizedSearchCV entropy 8 19 3 
BayesSearchCV gini 5 18 2 

 
e) Performance Evaluation with GridSearch, RandomizedSearch, and Bayesian Tuned 

Hyperparameters 
Decision tree classifiers were built with the considered parameters for hyperparameter tuning set 

to the selected ideal values derived from each of the parameter space search techniques. The results are 
summarized in Table X and the individual confusion matrix for the classifier trees built with the ideal 
parameters from GridSearchCV, RandomizedSearchCV, and BayesSearchCV are shown in Fig. 24, 25 
and 26 respectively. 

 
Fig. 24. Confusion Matrix of Decision Tree Classifier with hyperparameters from GridSearchCV  

 

 
Fig. 25. Confusion Matrix of Decision Tree Classifier with hyperparameters from RandomizedSearchCV 
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Fig. 26. Confusion Matrix of Decision Tree Classifier with hyperparameters from BayesSearchCV 

TABLE X.  PERFORMANCE EVALUATION OF DECISION TREE WITH FOR GRIDSEARCHCV, 
RANDOMIZEDSEARCHCV, AND BAYESSEARCHCV 

 

 Accuracy Precision Recall 
 

F1 
Score 

Weighted 
F1 Score 

Area 
Under 
ROC 
curve 

Mean 
Squared 

Error 

GridSearchCV 0.7365 0.7426 0.8084 0.7741 0.7343 0.8090 0.2635 
RandomizedSearchCV 0.7342 0.7525 0.7811 0.7665 0.7335 0.8072 0.2657 

BayesSearchCV 0.7368 0.7453 0.8030 0.7731 0.7349 0.8091 0.2632 
 

Overall, the performance metrics can be summarized as follows: 
1. Accuracy: 73.68% 
2. Precision: 74.53% 
3. Recall: 80.30% 
4. F1-Score: 77.31% 
5. MSE: 0.2632 
6. AUC-ROC: 0.8091 
7. Confusion Matrix 
    [1153 613] 
    [440 1794] 

 
3. Naïve Bayes 

 
The Naïve bayes model simply considers that each feature is independent from others, thus the bayes 

equation could be simplified. Fortunately, the correlation matrix shows that the correlations between 
features are low and thus even such simple algorithm is expected to achieve reasonable prediction results. 
For this classification task, most numerical features show gaussian distribution in terms of likelihood, the 
Gaussian distribution based naïve bayes model is selected in the sci-kit learn library.  

In order to have a better understanding on the relationships among features and classification labels is 
shown as follows in Fig. 27 which relies on Seaborn to generate this pair plot. 
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Fig. 27. Pair plot of top 4 featues in the dataset with classification labels 

 
It is straightforward to see the probability distribution function for each class for features “age”, 

“height”, “weight” and “waistline”. All those show normal distribution for “Healthy” and “Unhealthy” 
labels. There are a few features manifest different distributions but most of the features have normal 
distribution probability. Thus for the model of Naïve Bayes, the Gaussian Distribution based Naïve Bayes 
model is select, in sci-learn it is called “NaiveNB()”. Gaussian distribution parameters, namely mean and 
deviation are generated from the training data. 
Naïve Bayes algorithm has many advantages even through its accuracy is far from accurate: it is very fast 
to calculate and train the model, thus the tuning is really easy as there’s only one parameter to tune; 
visualization on Naïve Bayes model is also available and practitioners and readers could gain insights 
about the dataset.  
For illustration’s purpose, two numerical features namely “Height” and “Weight” of all predictors are 
utilized for prediction based on Naïve Bayes model using Gaussian Distribution are used to predict the 
lifestyle. 
Although Naïve Bayes algorithm is not accurate, we could have an intuitive understanding of the decision-
making process by showing the decision boundary of the binary classification, here are some of the 
illustrations on the decision boundary based on various combinations of features that would help us to 
learn more about the dataset intuitively. 
The following Fig. 28, 29, and 30 show the decision boundary based on 1000 randomly selected samples 
as using more data on the figure results in a larger file size and longer rendering time which could be 
around 200MB for the whole dataset yet there’s no significant plot differences in terms of the decision 
boundary figures. 
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Fig. 28. Decision Boundary and Class-conditional Density Contours using Gaussian Naïve Bayes 

Based on the figure with x axis as height in centimeter and weight in weight in kilogram unit, it is straight 
forward to infer that people who are lighter and shorter would maintain healthy lifestyle, on the contrary 
people who are heavier and higher struggle to enjoy a healthy lifestyle. It can also infer from the plot that 
there are fewer people who are lighter and higher or who are heavier and shorter, which makes sense since 
height and weight has a positive correlation. Although there’s a correlation between “Weight” and 
“Height” as taller people generally weigh more than shorter people, Naïve Bayes algorithm does not 
consider those correlations. The following 2 figures shows the decision boundary between “Height” and 
“Age” and “Weight” and “Age”. 

 
Fig. 29. Decision Boundary and Class-conditional Density Contours using Gaussian Naïve Bayes 
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Fig. 30. Decision Boundary and Class-conditional Density Contours using Gaussian Naïve Bayes 

For hyperparameter tuning, as we only considered Gaussian based Naïve Bayes, other models like 
randomized search or Bayes search would not be used here, there’s only one parameter to be tuned: 
var_smoothing. It is used to deal with conditions caused by zero variance in the features. The search space 
for var_smoothing is from 10−11 to 1. In this hyperparameter tuning, only GridSearch is used thanks to 
the simplicity of Naïve Bayes algorithm. By varying the hyperparameters of cross-validation value, data 
split size of 0.7 or 0.8 as well as top features, it is surprising to find that best metrics happen with top 25% 
features. Table XI shows the performance metrics for the Naïve Bayes Algorithm. 

TABLE XI.  PERFORMANCE METRICS FOR NAÏVE BAYES ALGORITHM 

 
Naïve Bayes Tuning Results 

 7 Features 13 Features 25 Features 
Smoothing 1.26 × 10−5 2.29 × 10−6 2.90 × 10−11 
Accuracy 71.77% 71.45% 70.08% 
Precision 76.32% 76.39% 77.11% 

Recall 70.46% 69.47% 66.63% 
F1 73.27% 72.77% 71.49% 

MSE 0.2823 0.2855 0.2918 
AUC-ROC 0.7191 0.7166 0.7127 

Confusion 
Matrix 

[62924 22842] 
 [30867 73622]  

[63341 22425] 
 [31902 72587] 

[65108 20658] 
 [34863 69626] 

There’s no big difference for iterating through parameters like cross-validation values, or data splitting 
ratio, only amount of features taken into consideration would impact the performance as more features 
results in worse performance. It is possible that 2 or 3 features would have better results than 7 features, 
which indicates that decision boundary figures shown above could have the best performance and yet they 
are easy to visualize. Naïve Bayes model can be used as a baseline to judge a dataset and it can be really 
efficient to do classifications or predictions within a very small amount of time as everyday people apply 
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this algorithm to evaluate or predict tasks in a quantitative or qualitative manner based on previous events 
within a short amount of time frame. 
 
Overall, the performance metrics can be summarized as follows: 

1. Accuracy: 71.77% 
2. Precision: 76.32% 
3. Recall: 70.46% 
4. F1-Score: 73.27% 
5. MSE: 0.2823 
6. AUC-ROC: 0.7191 
7. Confusion Matrix 
    [62924 22842] 
    [30867 73622] 

 
4. K-Nearest Neighbor (KNN) 

 
In the implementation of the K-Nearest Neighbors algorithm, the following steps were taken:  

- Visualization of the Dataset 
-  Manual Hyperparameter Optimization 
- Performance Evaluation with Manually Tuned Hyperparameters 
- Hyperparameter Tuning Using GridSearchCV, RandomizedSearchCV, and BayesianCV  
- Performance Evaluation with GridSearch, RandomizedSearch, and Bayesian Tuned Parameters 

 
a) Visualization of the Dataset 

The total number of features, 25, were plotted using the seaborn data visualization library based on 
matplotlib. The graph showcases how the values of different features relate to or impact the values of the 
target variable. This shows how the values of different features relate to or impact the values of the target 
variable (dependent variable). This provides an understanding of the impact of the various features on the 
decision made on whether a person is healthy or not. This is shown in Fig. 31 below. 

 
Fig. 31. Dataset Visualization for features used for training KNN model 
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b) Manual Hyperparameter Optimization 
In order to find the ideal value for the number of nearest neighbors, K, the curve of validation error 

and K for a range of K values from 1 to 60 was plotted (Fig. 32) and the corresponding K value to the 
point in the curve at which the minimum error occurs (denoted in orange) is chosen as the ideal K value. 
The ideal K value for this dataset using manual hyperparameter optimization is 39.   

 

Fig. 32. Graph showing curve of validation error and K 

c) Performance Evaluation Using Manually Tuned Hyperparameters 
 A K-Nearest Neighbors classifier was built with the value of the number of nearest neighbors set to 
the ideal K value. The result is summarized in Table XII and the confusion matrix for the classifier tree is 
shown in Fig. 33. 

 

Fig. 33. Confusion  Matrix for Manual Hyperparameter Optimization 
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TABLE XII.  PERFORMANCE EVALUATION OF  K-KNEAREST NEIGHBORS WITH IDEAL K VALUE 

 

Ideal 
K 

Value Accuracy Precision Recall 
 

F1 
Score 

Weighted 
F1 Score 

Area 
Under 
ROC 
curve 

Mean 
Squared 

Error 

K 39 0.6997 0.7140 0.7713 0.7416 0.6975 0.7607 0.3003 
d) Hyperparameter Tuning Using GridSearchCV, RandomizedSearchCV, and BayesianCV  

The criterion for the selection of the K value was optimized using grid search by creating an instance 
of a search object (with a K-Nearest Neighbors classifier and the hyperparameter) and conducting a search 
over the parameter space given for the individual hyperparameters. 

The range of K values was given from 1 to 60. After doing the search, the ideal parameters for the 
various search techniques using 5-fold cross validation are summarized in Table XIII and the ideal 
parameters for the various search techniques using 10-fold cross validation are summarized in Table XIV. 

TABLE XIII.  IDEAL HYPERPARAMETER VALUES FOR GRIDSEARCHCV, RANDOMIZEDSEARCHCV, AND 
BAYESSEARCHCV WITH 5-FOLD CROSS VALIDATION 

 K value 
GridSearchCV 36 

RandomizedSearchCV 46 
BayesSearchCV 38 

TABLE XIV.  IDEAL HYPERPARAMETER VALUES FOR GRIDSEARCHCV, RANDOMIZEDSEARCHCV, AND 
BAYESSEARCHCV WITH 10-FOLD CROSS VALIDATION 

 K value 
GridSearchCV 44 

RandomizedSearchCV 46 
BayesSearchCV 44 

e)  Performance Evaluation with GridSearch, RandomizedSearch, and Bayesian Tuned Parameters 
K-Nearest Neighbors classifiers were built with the K value set to the selected ideal values derived 

from each of the parameter space search techniques. The results for 5-fold cross validation are 
summarized in Table XV and the individual confusion matrix for the classifier trees built with the ideal 
parameters from GridSearchCV, RandomizedSearchCV, and BayesSearchCV are shown in Fig. 34, 35, 
and 36 respectively. The results for 10-fold cross validation are summarized in Table XVI and the 
individual confusion matrix for the classifier trees are shown in Fig. 37, 38, and 39 respectively. 

 

Fig. 34. Confusion  Matrix of K-Nearest Neighbours Classifier with hyperparameters from 
GridSearchCV with 5-fold cross validation 
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Fig. 35. Confusion  Matrix of K-Nearest Neighbours Classifier with hyperparameters from 

RandomizedSearchCV with 5-fold cross validation 

 

 
Fig. 36. Confusion  Matrix of K-Nearest Neighbours Classifier with hyperparameters from 

BayesSearchCV with 5-fold cross validation 

 
Fig. 37. Confusion  Matrix of K-Nearest Neighbours Classifier with hyperparameters from 

GridSearchCV with 10-fold cross validation 
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Fig. 38. Confusion  Matrix of K-Nearest Neighbours Classifier with hyperparameters from 

RandomizedSearchCV with 10-fold cross validation 

 

 
Fig. 39. Confusion  Matrix of K-Nearest Neighbours Classifier with hyperparameters from 

BayesSearchCV with 10-fold cross validation 

TABLE XV.  PERFORMANCE EVALUATON OF K-NEAREST NEIGHBORS FOR GRIDSEARCHCV, 
RANDOMIZEDSEARCHCV, AND BAYESSEARCHCV WITH 5-FOLD CROSS VALIDATION 

 Accuracy Precision Recall 
 

F1 
Score 

Weighted 
F1 Score 

Area 
Under 
ROC 
curve 

Mean 
Squared 

Error 

GridSearchCV 0.7045 0.7212 0.7515 0.7412 0.7011 0.7605 0.3081 
RandomizedSearchCV 0.7031 0.7224 0.7674 0.7419 0.6914 0.7615 0.3065 

BayesSearchCV 0.7015 0.7241 0.7554 0.7425 0.7021 0.7684 0.3014 

TABLE XVI.  PERFORMANCE EVALUATON OF K-NEAREST NEIGHBORS FOR GRIDSEARCHCV, 
RANDOMIZEDSEARCHCV, AND BAYESSEARCHCV WITH 10-FOLD CROSS VALIDATION 

 Accuracy Precision Recall 
 

F1 
Score 

Weighted 
F1 Score 

Area 
Under 
ROC 
curve 

Mean 
Squared 

Error 

GridSearchCV 0.7051 0.7220 0.7518 0.7322 0.6944 0.7619 0.3092 
RandomizedSearchCV 0.7047 0.7221 0.7679 0.7435 0.6949 0.7621 0.3041 

BayesSearchCV 0.7029 0.7251 0.7567 0.7340 0.6981 0.7645 0.3033 
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Overall, the performance metrics can be summarized as follows: 
1. Accuracy: 70.15% 
2. Precision: 72.41% 
3. Recall: 75.54% 
4. F1: 74.25% 
5. MSE: 0.3014 
6. AUC-ROC: 0.7684 
7. Confusion Matrix 

[1115  651] 
[551 1683] 

 
5. Support Vector Machine (SVM) 
 

In our lifestyle classification model, we identified the Support Vector Machine as one of the top-
performing models, exhibiting overall good accuracy and F1-scores. A 3D diagram showing three features 
(Gamma_GTP/AST, Hemoglobin_A1C, Lifestyle) that are separated by a non-linear decision boundary 
surface using a Radial Basis Function (RBF) kernel as illustrated in Fig. 40 for two different viewing 
angles. We have used 1000 random samples to plot the 3D diagram. 

    
                                               (a)                                                                        (b)  

Fig. 40. Features Separated by Non-Linear Decision Boundary Surface using RBF Kernel for two 
different viewing angles (a) Elev: 9°, Azim: 18° (b) Elev: 45°, Azim: 54°  

The most striking feature of SVM is its kernel trick where it implicitly maps input data into a higher-
dimensional space without explicitly computing the transformation by using a kernel function, such as 
radial basis function (RBF) or polynomial kernel. In our project, we conducted multiple experiments aimed 
at enhancing our model's performance and achieving higher F1-scores. Due to limitations in computational 
resources and the complexity of hyperparameter tuning, we opted to train our model on a subset of the 
data, specifically 20,000 randomly selected samples. Throughout our experiments, we explored different 
feature subsets, including all 25 features, the top 13 features (50%), and the top 7 features (25%).  

Through experimentation, we investigated different train-test split ratios, specifically 80/20 and 70/30, 
and observed that the 80/20 split consistently outperforms the 70/30 split across all metrics.  

All of our experiments were run for both 5-fold cross validation and 10-fold cross validation. However, 
we have found that 5-fold cross validation performs almost similarly compared to 10-fold cross validation. 
Therefore, we have only reported the results for 5-fold cross validation. 

The hyperparameter tuning process involved the following steps: 
1. Utilizing Grid Search CV, Randomized Search CV, and Bayesian Search CV to systematically 

search for optimal hyperparameters. 
2. Exploring various kernels, such as "linear," "RBF," and "poly," to assess their impact on model 

performance. We have used default degree (degree =3) for ploy kernel. 



Virginia Tech ECE 5424 Advanced Machine Learning Final Term Report                                                                                37 

3. Tuning both "C" values and "Gamma" values to identify the most suitable parameters for our model 
to avoid both overfitting and underfitting. 

Table XVII shows the performance metrics by tuning the hyperparameters taking all 25 features into 
account. We have found that RBF kernel best suits our dataset. “C” value is the regularization parameter 
that controls the bias-variance trade-off of our model. In our case with Grid Search, “C” value is 1 which 
indicates “moderate regularization” resulting in a balance between achieving a smooth decision boundary 
and minimizing training errors while trying to maintain a reasonable margin between classes. Gamma 
parameter determines the influence of a single training sample. For Grid Search, gamma value 0.1 indicates 
a relatively low influence of a single training sample. For the Random and Bayes Search CV, higher values 
of C parameter are balanced by lower values of gamma parameter. Since our dataset is moderately 
imbalanced, we have mainly focused on the F1-scores. The best performance was achieved using Bayesian 
Search CV with an RBF kernel, having "C" set to 215.44 and gamma to 0.001, resulting in 74.40% 
accuracy and a 77.59% F1-score. 

TABLE XVII.  HYPERPARAMETER VALUES FOR GRIDSEARCHCV, RANDOMIZEDSEARCHCV, AND 
BAYESSEACHCV FOR 25 (100%) FEATURES 

Metric Grid Random Bayes 
25 Features 

C 1 215.44346 215.443469 
Kernel RBF RBF RBF 
Gamma 0.1 0.001 0.001 

Accuracy 74.30% 74.28% 74.40% 
Precision 75.77% 75.78% 75.90% 

Recall 79.36% 79.27% 79.36% 
F1 77.53% 77.49% 77.59% 

MSE 0.2570 0.2573 0.2560 
AUC-ROC 0.8011 0.8185 0.8202 
Confusion 

Matrix 
[1199  567] 
 [ 461 1773] 

[1200  566] 
 [ 463 1771] 

[1203  563] 
 [ 461 1773] 

 
Table XVIII showcases performance metrics after hyperparameter tuning with the top 13 features 

(50%). We replicated the aforementioned steps, yielding comparable results in performance metrics.  

TABLE XVIII.  HYPERPARAMETER VALUES FOR GRIDSEARCHCV, RANDOMIZEDSEARCHCV, AND 
BAYESSEACHCV FOR 13 (50%) FEATURES 

Metric Grid Random Bayes 
13 Features 

C 1 2.1544346 2.15443469 
Kernel RBF RBF RBF 
Gamma 0.1 0.1 0.1 

Accuracy 74.68% 74.55% 74.65% 
Precision 76.84% 76.69% 77.18% 

Recall 78.25% 78.20% 77.53% 
F1 77.53% 77.44% 77.36% 

MSE 0.2533 0.2545 0.2535 
AUC-ROC 0.7989 0.7959 0.8041 
Confusion 

Matrix 
[1239  527] 
 [ 486 1748] 

[1235  531] 
 [ 487 1747] 

[1254  512] 
 [ 502 1732] 
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Finally, In Table XIX, we present the performance metrics obtained by fine-tuning hyperparameters 
while considering only the top 7 features (25%). The results showcase similarities with good accuracy and 
F1-scores, indicating consistent and satisfactory performance. 

TABLE XIX.  HYPERPARAMETER VALUES FOR GRIDSEARCHCV, RANDOMIZEDSEARCHCV, AND 
BAYESSEACHCV FOR 7 (25%) FEATURES 

Metric Grid Random Bayes 
7 Features 

C 10 0.4641588 0.464158883 
Kernel RBF RBF RBF 
Gamma 0.1 0.46415888 0.464158883 

Accuracy 74.38% 74.40% 74.40% 
Precision 76.48% 76.28% 76.26% 

Recall 78.16% 78.60% 78.65% 
F1 77.31% 77.43% 77.43% 

MSE 0.2563 0.2560 0.2560 
AUC-ROC 0.7885 0.7837 0.7814 
Confusion 

Matrix 
[1229  537] 
 [ 488 1746] 

[1220  546] 
 [ 478 1756] 

[1219  547] 
 [ 477 1757] 

 
The Area under the Receiver Operating Characteristic ROC curve for SVM indicating its values for 

three different hyperparameter tuning methods is illustrated in Fig. 41. The highest AUC-ROC value, 
0.8202, was achieved when considering all 25 features indicating a “good” classification ability. AUC-
ROC is a measure of how well a model distinguishes between classes, specifically the trade-off between 
recall or sensitivity (true positive rate) and fall-out (false positive rate). 

 
Fig. 41. Receiver Operating Characteristic (ROC) curve for SVM indicating its values for three different 

hyperparameter tuning methods  
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Overall, the performance metrics can be summarized as follows: 
1. Accuracy: 74.40% 
2. Precision: 75.90% 
3. Recall: 79.36% 
4. F1: 77.59% 
5. MSE: 0.2560 
6. AUC-ROC: 0.8202 
7. Confusion Matrix 

[1203  563] 
[461  1773] 

 
6. Multi-layer Perceptron (MLP) 

As one of the most important machine learning models, MLP will be studied for this project, there are 
many parameters to tune and yet this training and tuning process is a time consuming. A Large amount of 
computing powers are needed the model update process, in order to work on the simulation and 
hyperparameter tuning process, some tasks for this more will sample a part of the whole dataset to test its 
performance. For the setup which will not be used for hyperparameter tuning, the default parameters are:  

◼ one hidden layer with 10 neurons 
◼ relu activation function 
◼ adam solver, alpha equals 0.0001 
◼ batch size is 64 
◼ learning rate is constant 

Proportion of dataset is first to be considered in order to have a better understanding on performance of 
the model. The following figure shows the performance of the model regarding the percentage of dataset 
being used. It can be shown that a larger dataset improves the performance, yet more time and computing 
resources are needed. Fig. 42 illustrates Fig. 42. 5-Fold CV Weighted F1 Score over Samples using MLP. 

 
Fig. 42. 5-Fold CV Weighted F1-Score over Samples using MLP 

In the beginning, small size of dataset would dramatically impact the model performance, later on more 
dataset elevates the F1 weighted score, both training and testing cross validation scores stabilizes while 
training score outperformances testing one with no indications of overfitting, although alpha is used as the 
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default value and it is not tuned to penalize the overfitting problem. This simulation stops at 25% percent 
as further simulation would spend a lot of time. 
One thing we want to examine is how the parameter alpha in MLP is able to avoid the problem of 
overfitting. Larger value results in larger penalization to avoid overfitting problem. Fig. 43 shows the 
performance of the machine learning model with respect to variable alpha value. 

 

 
Fig. 43. 5-Fold CV Weighted F1-Score over alpha using MLP 

As MLP is known for its network structure, this series of simulations are focusing on tuning the number 
of neurons, as we leant in class, MLP by definition has 1 hidden layer, thus 1 hidden layer is focused first 
and later another layer is variations are also being considered. 
For the single hidden layer condition shown in Fig. 44, numbers of neurons from 1 to 100 are being 
considered; there’s a difference between training and testing scores. Generally speaking, making the 
network more complex by adding more neurons in the hidden layer may not increase the performance. 

 
 

Fig. 44. 5-Fold CV Weighted F1-Score over 1st Layer Neurons using MLP 
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If a second layer with 11 neurons is added and changing the number of neurons in the first layer from 1 to 
100 shows that there’s performance degradation, Fig. 45 provides such setup. 

 
Fig. 45. 5-Fold CV Weighted F1 Score over 1st Layer Neurons using MLP with 11 2nd Layer Neurons 

Trying to varying the neurons of the 2nd layer may not improve the perforamance as here’s the comparison 
between 6 neurons 2nd hidden layer and 11 neurons 2nd hidden layer as shown in Fig. 46. 

 
Fig. 46. 5-Fold CV Weighted F1 Score over 1st Layer Neurons using MLP with 6 and 11 2nd Layer 

Neurons 

 It could be judged that mlp based neural network is very popular in academic and industry, adding 
complexity to it may not be the only option to improve the performance, even worse, more complexity 
results in the downgraded performance as more computing resoures are used.  
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Although we anticipate MLP would take a lot of time for hyperparameter tuning, the simulation process 
takes more than is anticipated. Thus, a portion of dataset will be used for tuning the model, In this part, 
10,000 values are sampled from the dataset. In addition, for hyperparameter tuning algorithm, Randomized 
Search and Bayes Search are used since Grid Search takes a long time to iterate through the whole lists of 
parameters, the following list contains the search space for the parameters. 

◼     'hidden_layer_sizes': [(1, ),(2, ),(5, ),(10, ),(15, ),(20, ),(30, )] 
◼     'activation': ['tanh', 'relu','logistic'] 
◼     'solver': ['sgd', 'adam'] 
◼     'alpha': [0.0001, 0.001, 0.01] 
◼     'batch_size': [32, 64, 128] 

The most optimized parameters are shown as follows in Table XX: 

TABLE XX.  PERFORMANCE METRIC FOR MULTY-LAYER PERCEPTRON 

CV CV=5 CV=5 CV=5 
Top Featues 25 Features 13 Features 7 Features 
Algorithm Random Search Random Search Bayes Search 
Accuracy 76.75% 74.45% 74.4% 
Precision 76.36% 74.06% 73.97% 

Recall 76.18% 73.60% 73.67% 
F1-Score 76.26% 73.76% 78.79% 

MSE 0.2325 0.2555 0.256 
AUC 0.8467 0.8216 0.813 

Confusion 
Matrix 

[624 244] 
 [221 911] 

[583 285] 
 [226 906] 

[592 276] 
 [236 896] 

 
7. Random Forest 
In the implementation of the random forest algorithm, the following steps were taken:  

- Preliminary Training and Performance Evaluation 
- Hyperparameter Tuning Using GridSearchCV, RandomizedSearchCV, and BayesianCV  
- Performance Evaluation with GridSearch, RandomizedSearch, and Bayesian Tuned  
 

a) Preliminary Training and Performance Evaluation  
A preliminary classification tree was built and trained with the performance evaluated to report on 

how the model performed before optimizing the hyperparameters. 
The performance and confusion matrix are represented in Table XXI and Fig. 47 respectively.  

TABLE XXI.  PERFORMANCE EVALUATION OF PPRELIMINARY RANDOM FOREST MODEL 

 Accuracy Precision Recall 
 

F1 
Score 

Weighted 
F1 Score 

Area 
Under 
ROC 
curve 

Mean 
Squared 

Error 

Preliminary RF model 0.7360 0.7577 0.7753 0.7664 0.7355 0.8163 0.32640 
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Fig. 47. Graph Showing Preliminary Performance of Random Forest Model 

b) Hyperparameter Tuning Using GridSearchCV, RandomizedSearchCV, and BayesianCV  
The criterion for maximum depth, number of estimators, and minimum samples per leaf were 

optimized using grid search, randomized search, and Bayesian search by creating an instance of a search 
object (with a decision tree classifier and the hyperparameters) and conducting a search over the parameter 
space given for the individual hyperparameters.  
The options given for the various hyperparameters are specified below:  

Maximum Depth: [2,3,5,10,20] 
Minimum Samples Leaf: [5,10,20,50,100,200] 
Number of estimators: [10,25,30,50,100,200] 

 
After doing the search, the ideal parameters for the various search techniques using 5-fold cross 

validation are summarized in Table XXII and the ideal parameters for the various search techniques using 
5-fold cross validation are summarized in Table XXIII. 

TABLE XXII.  IDEAL HYPERPARAMETER VALUES FOR GRIDSEARCHCV, RANDOMIZEDSEARCHCV, AND 
BAYESSEARCHCV WIT 5-FOLD CROSS VALIDATION 

 Max. Depth Min. Samples Leaf Number of 
estimators 

GridSearchCV 10 20 50 
RandomizedSearchCV 20 10 200 

BayesSearchCV 10 20 50 

TABLE XXIII.  IDEAL HYPERPARAMETER VALUES FOR GRIDSEARCHCV, RANDOMIZEDSEARCHCV, AND 
BAYESSEARCHCV WIT 5-FOLD CROSS VALIDATION 

 Max. Depth Min. Samples Leaf Number of 
estimators 

GridSearchCV 10 10 200 
RandomizedSearchCV 10 20 100 

BayesSearchCV 10 10 200 
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c) Performance Evaluation with GridSearchCV, RandomizedSearchCV, and BayesianCV 
Parameters 

Random Forest classifiers were built with the considered parameters for hyperparameter tuning set 
to the selected ideal values derived from each of the parameter space search techniques. The results for 5-
fold cross validation are summarized in Table XXIV and the individual confusion matrix for the classifier 
trees built with the ideal parameters from GridSearchCV, RandomizedSearchCV, and BayesSearchCV are 
shown in Fig. 48, 49, and 50 respectively. 
The results for 10-fold cross validation are summarized in Table XXV and the individual confusion matrix 
for the classifiers are shown in Fig. 51, 52, and 53 respectively. 

 

 

Fig. 48. Confusion matrix of Random Forest Classifier with hyperparameters from GridSearchCV with 
5-fold cross validation 

 
Fig. 49. Confusion matrix of Random Forest Classifier with hyperparameters from 

RandomizedSearchCV with 5-fold cross validation 
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Fig. 50. Confusion matrix of Random Forest Classifier with hyperparameters from BayesSearchCV with 

5-fold cross validation 

 
Fig. 51. Confusion matrix of Random Forest Classifier with hyperparameters from GridSearchCV with 

10-fold cross validation 

 
Fig. 52. Confusion matrix of Random Forest Classifier with hyperparameters from 

RandomizedSearchCV with 5-fold cross validation 



Virginia Tech ECE 5424 Advanced Machine Learning Final Term Report                                                                                46 

 

 
Fig. 53. Confusion matrix of Random Forest Classifier with hyperparameters from BayesSearchCV with 

5-fold cross validation 

TABLE XXIV.  PERFORMANCE EVALUATION OF RANDOM FOREST CLASSIFIER WITH GRIDSEARCHCV, 
RANDOMIZEDSEARCHCV, AND BAYESSEARCHCV WIT 5-FOLD CROSS VALIDATION 

 OOB Accuracy Precision Recall  
F1  

Weighted 
F1 AUR MSE 

GridSearchCV 0.7499 0.74 0.76 0.79 0.78 0.74 0.82 0.26 
RandomizedSearchCV 0.7516 0.75 0.76 0.79 0.78 0.75 0.82 0.25 

BayesSearchCV 0.7499 0.74 0.76 0.79 0.78 0.74 0.82 0.26 
 

TABLE XXV.  PERFORMANCE EVALUATION OF RANDOM FOREST CLASSIFIER WITH GRIDSEARCHCV, 
RANDOMIZEDSEARCHCV, AND BAYESSEARCHCV WIT 10-FOLD CROSS VALIDATION 

 OOB Accuracy Precision Recall  
F1  

Weighted 
F1 AUR MSE 

GridSearchCV 0.7491 0.75 0.77 0.79 0.78 0.75 0.82 0.25 
RandomizedSearchCV 0.7505 0.75 0.76 0.79 0.78 0.75 0.82 0.25 

BayesSearchCV 0.7491 0.75 0.77 0.79 0.78 0.75 0.82 0.25 
 
Overall, the performance metrics can be summarized as follows: 

1. Accuracy: 75% 
2. Precision: 77% 
3. Recall: 79% 
4. F1: 78% 
5. MSE: 0.25 
6. AUC-ROC: 0.82 
7. Confusion Matrix 

[1226  540] 
[468 1766] 

 
8. Gradient Boosting 
In this part, both gradient boosting and XGBoost algorithms are taken into consideration as they do share 
similarities. Several parameters are considered and varied to measure the weighted F1 score, it is noted 
that when varying one parameter, other parameters are not the optimized values, thus F1 score may not be 
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really high, but those figures would show how F1 score changes with those variables. Nevertheless, the 
hyperparameter tuning results will be shown later. 
When varying the number of estimators for both Gradient Boosting and XGBoost on the number of 
estimators as shown in Fig. 54, the performance improves by the number of estimators or trees. There’s 
also no indications there would be a overfitting phenomenon occur. Training and testing F1 weighted 
scores for both of the algorithms overlap based on the figure. 

 
Fig. 54. 5-Fold Weighted F1 Score over Estimators 

As this project has a large dataset, question on how well a model works with various amount of data, in 
the Fig. 55, maximum of 10% of data is used on Gradient Boosting and XGBoost, both have similar 
training and testing weighted f1 scores with similar variance from 5-fold cross validation. By increasing 
the sampling size, the performance can be improved but there’s a threshold that increasing sampling dataset 
would not affect the results. 

 
Fig. 55. 5-Fold CV Weighted F1 Score over Samples Proportion 
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The tree depth is one useful parameter in not only Gradient Boosting and XGBoost, but it can also be used 
in Random Forest which is also included in this study. Fig. 56 shows the 5-fold training and testing scores 
with different tree depth. From the figure, both Gradient Boosting and XGBoost have same optimized tree 
depth value, when such parameter goes beyond the optimized value, the scores for training and testing 
diminish.  

 

 
Fig. 56. 5-Fold CV Weighted F1 Score over Tree Depth 

Similar to multi-layer perceptron, Gradient Boosting and XGBoost also require considerable amount of 
computing power in order to train the model, thus Randomized Search and Bayes Search are used because 
of the efficiency. Hyperparameter tuning for both Gradient Boosting and XGBoost is based on the 
following search space. 

◼ 'n_estimators': [20, 50, 100, 200], 
◼ 'learning_rate': [0.001, 0.01, 0.1, 0.2], 
◼ 'max_depth': [3, 5, 7, 9, 15, 20, 30], 
◼ 'min_samples_split': [2, 4, 6, 8, 10, 15, 20, 30], 
◼ 'subsample': [0.5, 0.7, 1] 

 
The following tables, namely Table XXVI and Table XXVII show the tuned parameters for Gradient 
Boosting and XGBoost, as with MLP and different from Naïve Bayes, both Gradient Boosting and 
XGBoost improve the performance by including more features in the training and testing process. 
XGBoost has better performance than Gradient Boosting when all 25 features are included. 

TABLE XXVI.  PERFORMANCE METRIC FOR GRADIENT BOOSTING 

CV CV=5 CV=5 CV=5 
Top Features 25 Features 13 Features 7 Features 

Algorithm Bayes Search Random Search Bayes Search 
Accuracy 75.58% 74.24% 73.93% 



Virginia Tech ECE 5424 Advanced Machine Learning Final Term Report                                                                                49 

Precision 75.41% 74.04% 73.70% 
Recall 75.10% 73.71% 73.45% 

F1-Score 75.21% 73.82% 78.54% 
MSE 0.2441 0.2576 0.2608 
AUC 0.8310 0.8066 0.7998 

Confusion 
Matrix 

[6330 2684] 
 [2199 8787] 

[6168 2846] 
 [2306 8680] 

[6190 2824] 
 [2391 8595] 

TABLE XXVII.  PERFORMANCE METRIC FOR XGBOOST 

CV CV=5 CV=5 CV=5 
Top Features 25 Features 13 Features 7 Features 

Algorithm Random Search Bayes Search Random Search 
Accuracy 76.85% 74.2% 73.95% 
Precision 76.51% 73.76% 73.71% 

Recall 76.15% 73.47% 72.80% 
F1-Score 76.29% 73.59% 73.04% 

MSE 0.2315 0.258 0.2605 
AUC 0.8384 0.8148 0.8113 

Confusion 
Matrix 

[615 253] 
 [210 922] 

[590 278] 
 [238 894] 

[556 312] 
 [209 923] 

 
 
9. Majority Voting Classifier 
 

For the Majority Voting Classifier our idea was to combine the predictions of the best individual 
classifiers to make a final prediction to improve overall predictive performance and robustness. We have 
used three individual classifiers, namely, Support Vector Machine, Multi-Layer Perceptron, Random 
Forest Classifier for creating Majority Voting Classifier. We’ve used 10000 randomly selected samples 
from our dataset and split it into 80/20 train-test ratio. We have also executed 5-fold and 10-fold cross 
validation to our model and found almost similar results. Two different voting types, namely, soft and 
hard, were examined in pursuit of achieving the best F1-score. In ‘hard’ voting type each classifier votes 
for a class, and the class with the most votes is chosen as the final prediction. On the other hand, for the 
‘soft’ voting type instead of a binary vote, each classifier assigns a probability to each class. The final 
prediction is based on the class with the highest cumulative probability.  Table XXVIII shows the 
performance metrics for the Majority Voting Classifier using 10-fold cross validation with “soft” voting.  

TABLE XXVIII.  PERFORMANCE METRIC FOR THE MAJORITY VOTING CLASSIFIER WITH “SOFT” VOTING 

voting = 
'soft' CV=10 CV=10 CV=10 

 25 Features 13 Features 7 Features 
Mean CV 

Accuracy 74.57% 76.95% 75.95% 

Accuracy 75.85% 76.95% 75.95% 
Precision 74.94% 80.20% 78.58% 

Recall 86.13% 78.71% 79.06% 
F1-Score 80.15% 79.45% 78.82% 

MSE 0.2415 0.2305 0.2405 
AUC 0.8427 0.8343 0.8267 

Confusion 
Matrix 

[542 326] 
[157 975] 

[648 220] 
[241 891] 

[624 244] 
[237 895] 
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As from Table XXVIII, we can clearly see that the F1-score for 25 Features reached our expected 80% 
score. We have achieved this by carefully tuning each of our algorithm so that individually they can 
perform their level best, and them from the top-performing individual classifier, we have created our own 
ensemble classifier, called the Majority Voting Classifier to further extend their performance and finally 
achieved our goal of getting F1-score of 80% accuracy score.  

 
In Table XXIX, we have also reported the results when we use “hard” as our voting classifier. The 

results showed slightly inferior performance as compared to the ‘soft’ voting type. 

TABLE XXIX.  PERFORMANCE METRIC FOR THE MAJORITY VOTING CLASSIFIER WITH “HARD” VOTING 

voting = 'hard' CV=10 CV=10 CV=10 
 25 Features 13 Features 7 Features 

Mean CV Accuracy 74.57% 76.95% 75.95% 

Accuracy 74.90% 76.25% 75.50% 

Precision 73.44% 78.10% 78.11% 

Recall 87.19% 80.65% 78.80% 

F1-Score 79.73% 79.36% 78.45% 

MSE 0.2510 0.2375 0.2450 

Confusion Matrix [511 357] 
[145 987] 

[612 256] 
[219 913] 

[618 250] 
[240 892] 

 
Overall, the performance metrics can be summarized as follows: 

1. Accuracy: 75.85% 
2. Precision: 74.94% 
3. Recall: 86.13% 
4. F1: 80.15% 
5. MSE: 0.2415 
6. AUC-ROC: 0.8427 
7. Confusion Matrix:  

[542 326] 
[157 975] 

VI. RESULTS AND DISCUSSION 

A. Results  
In this section we will show the results of our models and discuss their performance. Fig. 57 shows the 
accuracy plot for our classifiers. We have found the maximum accuracy with Extreme Gradient Boosting 
classifier which is around 76.85%. The closest to it is the Multi-layer Perceptron Classifier with an 
accuracy of 76.75%. The worst-performing classifier in this list is K-Nearest Neighbors with 70.15% 
accuracy. It is expected since our dataset is not balanced leading to biased prediction for KNN. Along with 
KNN, Naïve Bayes Classifier also underperforms compared to its other counterpart having an accuracy of 
71.77% 
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Fig. 57. Accuracy Scores for Each Individual Classifier 

Fig. 58 illustrates the ‘Precision’ performance metric for each of the classifiers. 
 

 
 
 

Fig. 58. Precision Scores for Each Individual Classifier 
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The top-performing model in terms of precision is the Random Forest Classifier having a precision score 
of 77%. Most of our algorithms have good precision scores while KNN underperforms in this metric with 
a score of 72.41%. 
 
Fig. 59 depicts the “Recall” performance metric for our classifiers. 
 

 
 

Fig. 59. Recall Scores for Each Individual Classifier 

In terms of Recall score the Majority Voting Classifier (MVC) outperforms other classifiers by a large 
margin of around 6%. The Recall score for MVC is 86.13%, In contrast, the Naïve Bayes classifier falls 
short, demonstrating a less satisfactory performance with a Recall score just above 70%.  
 
Since our dataset is imbalanced, F1-score becomes the most important performance metric for our dataset. 
Fig. 60 illustrates the F1-scores for each of our classifiers. 
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Fig. 60. F1-Scores for Each Individual Classifier 

Since our primary aim was to achieve F1-score around 80%, we tried to tune each of the induvial classifier 
through hyperparameter tuning and used top-three performing individual classifiers to create an ensemble 
classifier, namely Majority Voting Classifier (MVC). From Fig. 60, we can see that the MVC outshines 
other classifiers with a pretty good F1-score of 80.15% that culminated in our successful achievement of 
the primary goal. However, as expected, Naïve Bayes classifier underperforms again with an F1-score of 
73.27% only.  
 
Moving forward, Fig. 61 demonstrates the Mean Square Error (MSE) performance metrics. 

 
Fig. 61. MSE Scores for Each Individual Classifier 
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Given that a lower Mean Squared Error (MSE) is preferable, from Fig. 61 we can conclude that KNN 
exhibits the poorest performance with an MSE score of 0.3014 while Extreme Gradient Boosting performs 
the best with an MSE score of 0.2315. 
 
Finally, Area under the Receiver Operating Characteristic Curve (AUC-ROC) performance metrics are 
shown in Fig. 62. 

 
Fig. 62. AUC-ROC Scores for Each Individual Classifier 

AUC-ROC scores for all classifiers are more than 0.8 except for KNN and Naïve Bayes classifiers with 
less than 0.77 AUC-ROC scores.  
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VII. TIMELINES  
As shown in the proposal, many time consuming computationally intensive experiments need to be done 

in time, thus designing a schedule for fulfilling the aims is vital. This section describes the timeline and the 
tasks assigned for each member of the team for collaboration to fulfill the aims for the lifestyle 
classification. Table XXX shows the timeline and the name of the person who will be working on the 
specific tasks to complete the project. 

TABLE XXX.  TIMELINE FOR THE FINAL REPORT 
Dataset Preprocessing 

Task List Name of the Person Timeline 

Data Cleaning and 
Exploratory Data Analysis, 

and Outlier Detection 
Shirazush Salekin Chowdhury October 09 to October 13 (1 week) 

Feature Engineering, and 
Feature Scaling Alberta Dadeboe October 16 to October 20 (1 week) 

Feature Selection Xiaomeng Wang October 16 to October 20 (1 week) 

Model Building, Validation and Performance Evaluation 

Logistic Regression Shirazush Salekin Chowdhury October 23 to November 03 (2 weeks) 

Decision Tree Alberta Dadeboe October 23 to November 03 (2 weeks) 

Naïve Bayes Xiaomeng Wang October 23 to November 03 (2 weeks) 

KNN Alberta Dadeboe November 06 to November 10 (1 week) 

Support Vector Machine Shirazush Salekin Chowdhury November 06 to November 10 (1 week) 

Multi-Layer Perceptron Xiaomeng Wang November 06 to November 10 (1 week) 

Ensemble Method 

Random Forest Alberta Dadeboe November 13 to November 17 (1 week) 

Gradient Boosting Xiaomeng Wang November 13 to November 17 (1 week) 

Majority Voting Classifier Shirazush Salekin Chowdhury November 13 to November 17 (1 week) 

 Experiments  

Quantitative (Sampling 
with 20,000 data) 

All members working on each 
respective algorithm October 23 to November 17 (4 weeks) Quantitative (Using all 

samples) 

Hyperparameter Tuning 

Report Writing for the Final 

Final Report All members November 20 to November 28 (1.5 
weeks) 

Final Report Formatting 
and Finalizing All members November 29 to December 06 (1 week) 
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VIII. CONCLUSION 
In conclusion, Lifestyle profoundly impacts both individual well-being and societal dynamics. This 
project, utilizing machine learning algorithms, aims to predict lifestyle based on biological measurements, 
offering valuable insights into the intricate effects of stimuli on one's biochemical system. The assessment 
involved benchmarking nine machine learning algorithms, including three ensemble classifiers. Notably, 
the Majority Voting Ensemble classifier exhibited superior performance, achieving an F1-score of 80.15% 
and an accuracy of 75.85%. In contrast, the Naïve Bayes and K-Nearest Neighbors algorithms demonstrate 
comparatively modest outcomes, with F1-scores of 73.27% and 74.25%, and accuracies of 71.77% and 
70.15%, respectively. Finally, we can say that we have successfully achieved what we have aimed for in 
our proposal report.  
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